Thermal depth profiling of vascular lesions: automated regularization of reconstruction algorithms.
نویسندگان
چکیده
Pulsed photo-thermal radiometry (PPTR) is a non-invasive, non-contact diagnostic technique used to locate cutaneous chromophores such as melanin (epidermis) and hemoglobin (vascular structures). Clinical utility of PPTR is limited because it typically requires trained user intervention to regularize the inversion solution. Herein, the feasibility of automated regularization was studied. A second objective of this study was to depart from modeling port wine stain PWS, a vascular skin lesion frequently studied with PPTR, as strictly layered structures since this may influence conclusions regarding PPTR reconstruction quality. Average blood vessel depths, diameters and densities derived from histology of 30 PWS patients were used to generate 15 randomized lesion geometries for which we simulated PPTR signals. Reconstruction accuracy for subjective regularization was compared with that for automated regularization methods. The objective regularization approach performed better. However, the average difference was much smaller than the variation between the 15 simulated profiles. Reconstruction quality depended more on the actual profile to be reconstructed than on the reconstruction algorithm or regularization method. Similar, or better, accuracy reconstructions can be achieved with an automated regularization procedure which enhances prospects for user friendly implementation of PPTR to optimize laser therapy on an individual patient basis.
منابع مشابه
Boundary temperature reconstruction in an inverse heat conduction problem using boundary integral equation method
In this paper, we consider an inverse boundary value problem for two-dimensional heat equation in an annular domain. This problem consists of determining the temperature on the interior boundary curve from the Cauchy data (boundary temperature and heat flux) on the exterior boundary curve. To this end, the boundary integral equation method is used. Since the resulting system of linea...
متن کاملAutomated Detection of Multiple Sclerosis Lesions Using Texture-based Features and a Hybrid Classifier
Background: Multiple Sclerosis (MS) is the most frequent non-traumatic neurological disease capable of causing disability in young adults. Detection of MS lesions with magnetic resonance imaging (MRI) is the most common technique. However, manual interpretation of vast amounts of data is often tedious and error-prone. Furthermore, changes in lesions are often subtle and extremely unrepresentati...
متن کاملRobust Reconstruction from Chopped and Nodded Images
In ground based infrared imaging a well-known technique to reduce the influence of thermal and background noise is chopping and nodding, where four different signals of the same object are recorded from which the object is reconstructed numerically. Since noise in the data can severely affect the reconstruction, regularization algorithms have to be implemented. In this paper we propose to combi...
متن کاملGlow Discharge Depth Profiling a Powerful Analytical Technique in Surface Engineering (TECHNICAL NOTE)
A variety of analytical techniques have been developed and employed to characterize the surfaces, subsurfaces and interfaces of surface engineering systems. They provide important information for quality control, process optimization and further development. Since the mid 1980's, glow discharge spectrometry (GDS) has emerged as an important and versatile technique for rapid depth profiling anal...
متن کاملTotal variation regularization for 3D reconstruction in fluorescence tomography: experimental phantom studies.
Fluorescence tomography (FT) is depth-resolved three-dimensional (3D) localization and quantification of fluorescence distribution in biological tissue and entails a highly ill-conditioned problem as depth information must be extracted from boundary measurements. Conventionally, L2 regularization schemes that penalize the euclidean norm of the solution and possess smoothing effects are used for...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physics in medicine and biology
دوره 53 5 شماره
صفحات -
تاریخ انتشار 2008